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ABSTRACT 
 

The 5-HT2A receptor binding affinities of the 2-alkyl-4-aryl-pyrimidine fused heterocycles have been quantitatively 
expressed in terms of topological and molecular features. The analysis revealed that less number of rotatable bonds 
(descriptor RBN), a more hydrophobic nature (descriptor MLOGP) and less polar surface area (descriptor PSA) in a 
molecular structure will be favorable to the binding affinity. A lower positive values of descriptors PW4 (path/walk 4 - 
Randic shape index) and MATS2m (Moran autocorrelation –lag 2/weighted by atomic masses) and higher value of 
descriptor MATS1v (Moran   autocorrelation –lag 1/weighted by atomic van der Waals volumes) will augment the activity. 
Additionally, a lower value of descriptor BEHm1 (highest eigenvalue n. 1 of Burden matrix/weighted by atomic masses), 
higher value of descriptor BEHp1 (highest eigenvalue n. 1 of Burden matrix / weighted by atomic polarizabilities) and a 
higher value of 7

th
 order charge index (GGI7) will be beneficiary to the activity. The derived models and participating 

descriptors in them have suggested that the substituents of 2-alkyl-4-aryl-pyrimidine fused heterocycles have sufficient 
scope for further modification. 
Keywords: QSAR, 2-Alkyl-4-aryl-pyrimidine fused heterocycles, 5-HT2 antagonists, binding affinity, combinatorial protocol 
in multiple linear regression (CP-MLR). 
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INTRODUCTION 
 

The neurotransmitter serotonin was first isolated and identified in as 5-hydroxytryptamine (5-HT) 
[1,2]. The existence of at least 14 different subtypes of 5-HT receptors each of which is encoded by distinct 
genes is confirmed by molecular cloning studies [1]. Based on pharmacology, amino acid sequence, gene 
organization and second messenger coupling pathways, 5-HT receptors have been divided into seven families 
[1-7] and designated as 5-HT[1-7].   

 
All of the 5-HT receptor subtypes are coupled to G-proteins except 5-HT3 receptor which is a ligand 

gated ion-channel [4]. It had been shown in perceptive operational studies that the monoamine elicits a 
complex array of pharmacological and physiological responses by acting at a diversity of 5-HT receptors. The 
action on at least one of the 5-HT receptor subtypes is the basis of the therapeutic value of many widely 
prescribed CNS drugs [5]. The 5-HT2A receptor subtype has implications in a variety of behavioral processes and 
neuropsychiatric disorders [6,7]. This receptor subtype also appears to be the site of action of many 
hallucinogenic compounds. LSD, mescaline and bufotenin act as agonists where as atypical antipsychotics such 
as risperdal, olanzapine, and clozapine act as high affinity antagonists of the 5-HT2A receptor [5]. The 

2 receptors and also possesses pharmacology which 
includes the antagonism of the 5-HT2 receptor subtypes [5]. The lack of selectivity of these and other drugs 
may result side effects. The designing of selective 5-HT receptor agonists or antagonists may be helpful to 
discover better tolerated medicines.  

 
The role of 5-HT2A antagonists in the treatment of certain sleep disorders has been suggested in 

pharmacological studies [8]. Both, the selective and non-selective 5-HT2A antagonists increase the amount of 
time humans spend in slow wave sleep which is the most restorative stage of the sleep cycle [9]. The 
representative reported 5-HT2A antagonists are ritanserin [7-9], eplivanserin [10], MDL- -
fluorosulfone, structurally related to MDL- -fluorosulfone exhibited an improved 
cardiovascular profile.  

 
More than 70% homology in the transmembrane domain of the 5-HT2A-2C receptor subtypes [5] is the 

main challenge in the discovery of subtype selective 5-HT2A antagonists. Determination of the therapeutic 
value of a selective 5-HT2A antagonist is dependent upon the discovery of such molecules having favorable 
pharmacokinetics.  

 
In a high-throughput screen of internal compound collection Sanfilippo et al. had identified 

aminopyrimidine as a high affinity ligand for the 5-HT2A receptor which have also shown significant affinity for 
the 5-HT2B and 5-HT2C receptor subtypes.   
 

In an attempt to find a molecule with increased selectivity over the 5-HT2B and 5-HT2C receptors 
Shireman et al. [14] have reported a series of 2-alkylpyrimidines. In view of the importance of 5-HT2A selective 
antagonists in the clinical management of sleep disorders, a quantitative structure–activity relationship is 
attempted on the binding affinities of these alkylpyrimidine derivatives. The present study is aimed at 
rationalizing the substituent variations of these analogues to provide insight for the future endeavours. 

 
MATERIALS AND METHODS 

 
Chemical structure database and biological activity 
 

This study comprises a chemical structure database of twenty 2-alkylpyrimidine derivatives, reported 
by Shireman et al. [14]. The receptor binding was performed using the human recombinant 5-HT2A, 5-HT2B and 
5-HT2C receptors. The affinity of these derivatives for the three different human 5-HT2 subtypes was evaluated 
by competitive radioligand binding assays using   [

3
H]ketanserin (h5-HT2A) or [

3
H]mesulergine (h5-HT2B and h5-

HT2C). The assays were performed on membranes prepared from NIH3T3 stably transfected with h5-HT2A or 
CHO stably transfected with h5-HT2B and h5-HT2C.[15]  The structural variations and the binding affinities of 
titled compounds have been given in Table 1. The reported activity data on molar basis has been used for 
subsequent QSAR analyses as the response variables. For the purpose of modeling all 20 analogues have been 
divided into training and test sets. Out of the 20 analogues, one fourth compounds (5) have been placed in the 
test set for the validation of derived models. The training and test set compounds are also listed in Table 1.  
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Table 1: Structures and observed and modeled 5-HT binding affinity of 2-Alkyl-4-aryl-pyrimidine fused heterocycles. 
 

N
H

NN

R1

R2

n

 
 

Cpd. n R1 R2 
pKi(5-HT2A)

a 

Obs. Eq. 6 Eq. 7 Eq. 8 Eq. 9 

1
b
 1 -NEt2 CH3 7.70 7.89 7.73 7.62 8.05 

2 2 

 

Cl 5.92 6.21 6.16 6.05 6.16 

3 2 

 

F 8.40 8.00 8.37 7.95 8.04 

4 2 

 

F 7.89 8.50 8.26 8.18 8.27 

5
 

2 

 

CH3 8.60 9.00 9.13 8.79 8.72 

6 2 

 

OCH3 7.96 7.99 7.81 7.77 8.12 

7 2 

 

CN 7.47 7.30 7.53 7.93 7.77 

8 2 

F  

F 9.15 8.72 8.56 8.51 8.59 

9
b 

2 

 

F 9.22 8.68 8.70 8.68 8.68 

10 2 

 

CH3 9.40 9.08 9.43 9.20 9.02 

11 2 

 

CH3 9.10 9.18 9.00 9.29 9.42 

12
b
 1 

 

F 7.70 8.16 8.15 8.38 8.29 

13 1 

 

F 8.66 7.92 7.98 8.11 8.20 

14 1 

 

F 8.30 8.40 7.74 8.13 8.03 

15
 

1 

 

F 7.96 7.84 7.93 7.90 7.67 

16
 

1 

F  

F 7.89 8.30 8.01 8.28 8.30 

17
b 

1 

 

F 7.96 7.90 7.95 7.88 7.92 

18
 

1 

 

F 7.40 7.31 7.61 7.26 7.08 

19 1 

 

F 7.54 7.89 8.12 8.29 8.23 

20
b 

1 

 

F 7.30 7.87 7.70 7.48 7.57 

 

a
On molar basis, taken from reference[14]; 

b
Compounds included in test set. 



ISSN: 0975-8585 
 

March – April  2015  RJPBCS   6(2)  Page No. 329 

Theoretical molecular descriptors 
 

Table 2:  Descriptor classes
a
 used along with their definition and scope for modeling the 5-HT2A binding affinity of 2-

alkylpyrimidine derivatives. 
 

Descriptor class (acronyms)
 

Definition and scope 

Constitutional 
(CONST) 

Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations 

  

Topological 
(TOPO) 

2D-descriptor from molecular graphs and independent conformations 

 

Molecular walk counts 
(MWC) 

2D-descriptors representing self-returning walks counts of different 
lengths 

Modified Burden eigenvalues 
(BCUT) 

2D-descriptors representing positive and negative eigenvalues of the 
adjacency matrix, weights the diagonal elements and atoms 

 

Galvez topological charge indices (GALVEZ) 
2D-descriptors representing the first 10 eigenvalues of corrected 

adjacency matrix 

  

2D-autocorrelations 
(2D-AUTO) 

Molecular descriptors calculated from the molecular graphs by summing 
the products of atom weights of the terminal atoms of all the paths of the 

considered path length (the lag) 

 

Functional groups 
(FUNC) 

Molecular descriptors based on the counting of the chemical functional 
groups 

 

Atom centered fragments 
(ACF) 

Molecular descriptors based on the counting of 120 atom centered 
fragments, as defined by Ghose-Crippen 

  

Empirical 
(EMP) 

1D-descriptors represent the counts of non-single bonds, hydrophilic 
groups and ratio of the number of aromatic bonds and total bonds in an 

H-depleted molecule 

 

Properties 
(PROP) 

1D-descriptors representing molecular properties of a molecule 

a
Reference [17] 

 
The structures of the compounds under study have been drawn in 2D ChemDraw [16]. The drawn 

structures were then converted into 3D modules using the default conversion procedure implemented in the 
CS Chem3D Ultra. The energy of these 3D-structures was minimized in the MOPAC module using the AM1 
procedure for closed shell systems. This will ensure a well defined conformer relationship among the 
compounds of the study. All these energy minimized structures of respective compounds have been ported to 
DRAGON software [17] for the computation of descriptors for the titled compounds (Table 1). This software 
offers several hundreds of descriptors from different perspectives corresponding to 0D-, 1D-, and 2D-
descriptor modules. The outlined modules comprised of ten different classes, namely, the constitutional 
(CONST), the topological (TOPO), the molecular walk counts (MWC), the BCUT descriptors (BCUT), the Galvez 
topological charge indices (GALVEZ), the 2D autocorrelations (2D-AUTO), the functional groups (FUNC), the 
atom-centered fragments (ACF), the empirical descriptors (EMP), and the properties describing descriptors 
(PROP). For each of these classes the DRAGON software computes a large number of descriptors which are 
characteristic to the molecules under multi-descriptor environment. The definition and scope of these 
descriptor’s classes is given in Table 2. The combinatorial protocol in multiple linear regression (CP-MLR) [18] 
procedure has been used in the present work for developing QSAR models. Before the application of CP-MLR 
procedure, all those descriptors which are intercorrelated beyond 0.90 and showing a correlation of less than 
0.1 with the biological endpoints (descriptor vs. activity, r < 0.1) were excluded. This has reduced the total 
dataset of the compounds from 464 to 89 descriptors as relevant ones for the 5-HT2A binding activity. A brief 
description of the computational procedure is given below. 
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Model development 
 

The CP-MLR is a ‘filter’ based variable selection procedure for model development in QSAR studies 
[18]. Its procedural aspects and implementation are discussed in some of our recent publications [19-23]. It 
involves selected subset regressions. In this procedure a combinatorial strategy with appropriately placed 
‘filters’ has been interfaced with MLR to result in the extraction of diverse structure-activity models, each 
having unique combination of descriptors from the dataset under study. In this, the contents and number of 
variables to be evaluated are mixed according to the predefined confines. Here the ‘filters’ are significance 
evaluators of the variables in regression at different stages of model development. Of these, filter-1 is set in 
terms of inter-parameter correlation cutoff criteria for variables to stay as a subset (filter-1, default value 0.3 
and upper limit ≤ 0.79). In this, if two variables are correlated higher than a predefined cutoff value the 
respective variable combination is forbidden and will be rejected. The second filter is in terms of t-values of 
regression coefficients of variables associated with a subset (filter-2, default value 2.0). Here, if the ratio of 
regression coefficient and associated standard error of any variable is less than a predefined cutoff value then 
the variable combination will be rejected. Since successive additions of variables to multiple regression 
equation will increase successive multiple correlation coefficient (r) values, square-root of adjusted multiple 
correlation coefficient of regression equation, r-bar, has been used to compare the internal explanatory power 
of models with different number of variables. Accordingly, a filter has been set in terms of predefined 
threshold level of r-bar (filter-3, default value 0.71) to decide the variables’ ‘merit’ in the model formation. 
Finally, to exclude false or artificial correlations, the external consistency of the variables of the model have 
been addressed in terms of cross-validated R

2
 or Q

2 
criteria from the leave-one-out (LOO) cross-validation 

procedure as default option (filter-4, default threshold value 0.3 ≤ Q
2 

≤ 1.0). All these filters make the variable 
selection process efficient and lead to unique solution. In order to collect the descriptors with higher 
information content and explanatory power, the threshold of filter-3 was successively incremented with 
increasing number of descriptors (per equation) by considering the r-bar value of the preceding optimum 
model as the new threshold for next generation.  
 
Model validation 
 

In this study, the data set is divided into training set for model development and test set for external 
prediction. Goodness of fit of the models was assessed by examining the multiple correlation coefficient (r), 
the standard deviation (s), the F-ratio between the variances of calculated and observed activities (F). A 
number of additional statistical parameters such as the Akaike’s information criterion, AIC *24,25+, the Kubinyi 
function, FIT *26,27+, and the Friedman’s lack of fit, LOF *28+, (Eqs. 1-3) have also been derived to evaluate the 
best model.  
 

2

RSS (n p )
AIC

(n p )

 



                                                (1) 

 
2

2 2

r (n k 1)
FIT

(n k ) (1 r )

  


  

                                 (2) 

 

2

RSS
nLOF

k(d 1)
1

n


 

 
   

                                 (3) 

 
where, RSS is the sum of the squared differences between the observed and the estimated activity 

values, k is the number of variables in the model, p' is the number of adjustable parameters in the model, and 
d is the smoothing parameter. The AIC takes into account the statistical goodness of fit and the number of 
parameters that have to be estimated to achieve that degree of fit. The FIT, closely related to the F-value 
(Fisher ratio), was proved to be a useful parameter for assessing the quality of the models. The main 
disadvantage of the F-value is its sensitivity to changes in k (the number of variables in the equation, which 
describe the model), if k is small, and its lower sensitivity if k is large. The FIT criterion has a low sensitivity 
toward changes in k-values, as long as they are small numbers, and a substantially increasing sensitivity for 
large k-values. The model that produces the minimum value of AIC and the highest value of FIT is considered 
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potentially the most useful and the best. The LOF takes into account the number of terms used in the equation 
and is not biased, as are other indicators, toward large numbers of parameters. A minimum LOF value infers 
that the derived model is statistically sound.  
 
 The internal validation of derived model was ascertained through the cross-validated index, Q

2
, from 

leave-one-out and leave-five-out procedures. The LOO method creates a number of modified data sets by 
taking away one compound from the parent data set in such a way that each observation has been removed 
once only. Then one model is developed for each reduced data set, and the response values of the deleted 
observations are predicted from these models. The squared differences between predicted and actual values 
are added to give the predictive residual sum of squares, PRESS. In this way, PRESS will contain one 
contribution from each observation. The cross-validated Q

2
LOO value may further be calculated as  

 
2

LOO
PRESSQ 1

SSY
 

                   
(4)

 
                                                                                                         

where, SSY represents the variance of the observed activities of molecules around the mean value. In 
leave-five-out procedure, a group of five compounds is randomly kept outside the analysis each time in such a 
way that all the compounds, for once, become the part of the predictive groups. A value greater than 0.5 of 
Q

2
-index hints toward a reasonable robust model.  

 
 The external validation or predictive power of derived model is based on test set compounds. The 
squared correlation coefficient between the observed and predicted values of compounds from test set, r

2
Test, 

has been calculated as 
 

2

Pred(Test) (Test)2

Test 2

(Test) (Training)

(Y Y )
r 1

(Y Y )


 






                     (5) 

 
where, YPred(Test) and Y(Test) indicate predicted and observed activity values, respectively of the test-set 

compounds, and (Training) indicate mean activity value of the training set. r
2

Test is the squared correlation 

coefficient between the observed and predicted data of the test-set. A value greater than 0.5 of r
2

Test suggests 
that the model obtained from training set has a reliable predictive power.  
 
Y-randomization  
 

Chance correlations, if any, associated with the CP-MLR models were recognized in randomization 
test [29,30] by repeated scrambling of the biological response. The data sets with scrambled response vector 
have been reassessed by multiple regression analysis (MRA). The resulting regression equations, if any, with 
correlation coefficients better than or equal to the one corresponding to the unscrambled response data were 
counted. Every model has been subjected to 100 such simulation runs. This has been used as a measure to 
express the percent chance correlation of the model under scrutiny. 
  

RESULTS AND DISCUSSION 
 

In multi-descriptor class environment, exploring for best model equation(s) along the descriptor class 
provides an opportunity to unravel the phenomenon under investigation. In other words, the concepts 
embedded in the descriptor classes relate the biological actions revealed by the compounds. For the purpose 
of modeling study, 5 compounds have been included in the test set for the validation of the models derived 
from 15 training set compounds. A total number of 89 significant descriptors from 0D-, 1D- and 2D-classes 
have been subjected to CP-MLR analysis with default ‘filters’ set in it. Statistical models in two and three 
descriptor(s) have been derived successively to achieve the best relationship correlating 5-HT2A binding 
affinity. These models (with 89 descriptors) were identified in CP-MLR by successively incrementing the filter-3 
with increasing number of descriptors (per equation). For this the optimum r-bar value of the preceding level 
model has been used as the new threshold of filter-3 for the next generation. A total number of 11 models in 
three descriptors were obtained. These models shared 19 descriptors. These descriptors along with their 
physical meaning, average regression coefficients and total incidences are listed in Table 3. 
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The selected models in three descriptors are given below. 
  

pKi(5-HT2A) = –1.165(0.461)PW4 – 2.056(0.465)MATS2m + 1.819(0.366)MLOGP + 9.231 
n = 15, r = 0.901, s = 0.424, F = 15.901, FIT = 1.987, LOF = 0.366, AIC = 0.310, 

Q
2

LOO = 0.654, Q
2

L5O = 0.528, r
2

randY(sd) = 0.235(0.141), r
2

Test
 
= 0.614  (6) 

 
pKi(5-HT2A) = –2.395(0.483)BEHm1 + 2.895(0.489)BEHp1 – 1.459(0.456)PSA + 7.990 

n = 15, r = 0.899, s = 0.428, F = 15.481, FIT = 1.935, LOF = 0.374, AIC = 0.317, 
Q

2
LOO = 0.668, Q

2
L5O = 0.528, r

2
randY(sd) = 0.237(0.179), r

2
Test

 
= 0.717  (7) 

 
 

pKi(5-HT2A) = 2.398(0.422)GGI7 –1.904(0.439)MATS2m +1.716(0.684)MATS1v + 6.923 
n = 15, r = 0.893, s = 0.440, F = 14.458, FIT = 1.807, LOF = 0.395, AIC = 0.335, 

Q
2

LOO = 0.670, Q
2

L5O = 0.715, r
2

randY(sd) = 0.167(0.128), r
2

Test
 
= 0.646  (8) 

 
 

pKi(5-HT2A) = –1.729(0.692)RBN + 3.416(0.601)GGI7 –2.218(0.453)MATS2m + 8.665 
n = 15, r = 0.892, s = 0.441, F = 14.409, FIT = 1.801, LOF = 0.396, AIC = 0.336, 

Q
2

LOO = 0.626, Q
2

L5O = 0.564, r
2

randY(sd) = 0.178(0.153), r
2

Test
 
= 0.624  (9) 

 
Table 3: Descriptors

a
 identified for modeling the 5-HT2A binding affinity of 2-alkylpyrimidine derivatives along with the 
average regression coefficient

b
, standard deviation and the total incidence. 

 

Descriptor 
Avg reg coeff (sd) total 

incidence 
Descriptor 

Avg reg coeff (sd) total 
incidence 

RBN -1.922(0.273)2 Ram 1.764(0.000)1 

BLI 1.490(0.000)1 PW4 -1.165(0.000)1 

BEHm1 -2.395(0.000)1 BEHe1 2.143(0.000)1 

BEHp1 2.895(0.000)1 BEHp3 1.771(0.384)2 

BELp4 2.459(0.000)1 GGI3 1.849(0.000)1 

GGI7 2.696(0.670)5 MATS2m -2.059(0.157)3 

MATS6m -2.002(0.346)3 MATS1v 1.759(0.060)2 

MATS8e -1.967(0.000)1 GATS5p 1.574(0.000)1 

Hy -7.119(0.000)1 PSA -1.306(0.266)3 

MLOGP 1.760(0.082)2  
 

a
The descriptors are identified from the three parameter models emerged from CP-MLR protocol with filter-1 as 

0.79; filter-2 as 2.0; filter-3 as 0.5; filter-4 as 0.3 ≤ Q
2 

≤ 1.0; number of compounds in the study are 15; CONST: RBN, 
number of rotatable bonds constitutional descriptors; TOPO: Ram, ramification index;  BLI, Kier benzene-likeliness index; 
PW4, path/walk 4 - Randic shape index; BCUT: BEHm1, highest eigenvalue n. 1 of Burden matrix / weighted by atomic 
masses; BEHe1, highest eigenvalue n. 1 of Burden matrix / weighted by atomic Sanderson electronegativities; BEHp1, 
highest eigenvalue n. 1 of Burden matrix / weighted by atomic polarizabilities; BEHp3, highest eigenvalue n. 3 of Burden 
matrix / weighted by atomic polarizabilities, BELp4, lowest eigenvalue n. 4 of Burden matrix / weighted by atomic 
polarizabilities, GALVEZ: GGI3, topological charge index of order 3; GGI7, topological charge index of order 7; 2D-AUTO: 
MATS2m, Moran autocorrelation - lag 2 / weighted by atomic masses; MATS6m, Moran autocorrelation - lag 6 / weighted 
by atomic masses; MATS1v,  Moran autocorrelation - lag 1 / weighted by atomic van der Waals volumes; MATS8e, Moran 
autocorrelation - lag 8 / weighted by atomic Sanderson electronegativities; GATS5p, Geary autocorrelation – lag 5 / 
weighted by atomic polarizabilities; PROP: Hy, hydrophilic factor; PSA, fragment-based polar surface area; MLOGP, 
Moriguchi octanol-water partition coeff. (logP). 

 
In above regression equations, the values given in the parentheses are the standard errors of the 

regression coefficients. The r
2

randY(sd) is the mean random squared multiple correlation coefficient of the 
regressions in the activity (Y) randomization study with its standard deviation from 100 simulations. In the 
randomization study (100 simulations per model), none of the identified models has shown any chance 
correlation. The signs of the regression coefficients suggest the direction of influence of explanatory variables 
in the models. 

 
The descriptor RBN belongs to CONST class of Dragon descriptors. The constitutional class descriptors 

are based on simple constitutional facts and are independent from molecular connectivity and conformations. 
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The descriptor RBN represents number of rotatable bonds in a molecular structure and its correlation to the 
activity is negative which suggests that lesser number of rotatable bonds in a molecular structure will be 
favorable to the binding affinity. The descriptors MLOGP and PSA are PROP class descriptors. Descriptor 
MLOGP is Moriguchi octanol-water partition coefficient (logP) and PSA is fragment-based polar surface area.  
These descriptors reflect upon the hydrophobic property of a molecule and polar surface area of a fragment, 
respectively. The positive and negative contribution of descriptors MLOGP and PSA respectively, to the activity 
advocate a more hydrophobic nature and less polar surface area in a molecule for augmented activity.  

 
  The participated descriptor PW4 is from the TOPO class of Dragon descriptors. The TOPO class 
descriptors are based on a graph representation of the molecule and are numerical quantifiers of molecular 
topology obtained by the application of algebraic operators to matrices representing molecular graphs and 
whose values are independent of vertex numbering or labeling. They can be sensitive to one or more structural 
features of the molecule such as size, shape, symmetry, branching and cyclicity and can also encode chemical 
information concerning atom type and bond multiplicity. The descriptor PW4 is the path/walk 4 - Randic shape 
index. This descriptor contributed negatively to the activity suggesting that a lower positive value of it would 
be beneficiary to the activity.  
 

The descriptors MATS2m and MATS1v, in above models, are representatives of 2D-AUTO class of 
Dragon descriptors. The 2D-AUTO descriptors, MATSke and GATSke have their origin in autocorrelation of 
topological structure of Moran and of Geary [31,32], respectively. The computation of these descriptors 
involves the summation of different autocorrelation functions corresponding to the different fragment lengths 
and lead to different autocorrelation vectors corresponding to the lengths of the structural fragments [33]. 
Also a weighting component in terms of a physicochemical property has been embedded in these descriptors. 
As a result, these descriptors address the topology of the structure or parts thereof in association with a 
selected physicochemical property. In these descriptors’ nomenclature, the penultimate character, a number, 
indicates the number of consecutively connected edges considered in its computation and is called as the 
autocorrelation vector of lag k (corresponding to the number of edges in the unit fragment). The very last 
character of the descriptor’s nomenclature indicates the physicochemical property considered in the weighting 
component for its computation. The participated descriptor MATS2m (Moran autocorrelation –lag 2/weighted 
by atomic masses) correlate negatively to the activity suggesting the unfavorable conditions associated with 
lag 2 weighted by atomic masses. The positive correlation of other descriptor MATS1v (Moran   
autocorrelation –lag 1/weighted by atomic van der Waals volumes) suggest the favorable conditions 
associated with lag 1 weighted by atomic van der Waals volumes.  

 
The descriptors BEHm1 and BEHp1 are from the BCUT class of Dragon descriptors. The BCUT 

descriptors are the first 8 highest and the lowest absolute eigenvalues, BEHwk and BELwk, respectively, for the 
modified Burden adjacency matrix. Here w refers to the atomic property and k to the eigenvalue rank. The 
ordered sequence of the highest and the lowest eigenvalues reflect upon the relevant aspects of molecular 
structure, useful for similarity searching. The negative and positive contribution of descriptors BEHm1 and 
BEHp1 to the activity respectively,   suggest a lower value of descriptor BEHm1 and a higher value of descriptor 
BEHp1 to enhance the activity. 
 

Descriptor GGI7 is the lone representative of the GALVEZ class of descriptors. The GALVEZ descriptors 
are the Galvez topological charge indices and have their origin in the first ten eigenvalues of the polynomial of 
corrected adjacency matrix of the compounds. All the GALVEZ class descriptors belong to two categories. Of 
this one category corresponds to the topological charge index of order n (GGIn) and the other to the mean 
topological charge index of order n (JGIn), where 'n' represents the order of eigen value. The positive influence 
of descriptor GGI7 (topological charge index of 7th order) from this class to the activity suggested that a higher 
value of 7th order charge index would be beneficiary to the activity. 

 
These models have accounted for up to 81.18 percent variance in the observed activities. The values 

greater than 0.5 of Q
2
-index is in accordance to a reasonable robust QSAR model. The pK i values of training set 

compounds calculated using Equations (6) to (9) have been included in Table 1. These models are validated 
with an external test set of five compounds listed in Table 1. The predictions of the test set compounds based 
on external validation are found to be satisfactory as reflected in the test set r

2
 (r

2
Test) values and the predicted 

activity values are also reported in Table 1. The plot showing goodness of fit between observed and calculated 
activities for the training and test set compounds is given in Figure 1. 
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Figure 1: Plots of observed versus calculated pKi values for the 2-alkylpyrimidine derivatives 

 
The SAR study of Shireman et al. [14] was aimed at to obtain molecules with increased selectivity 

versus the 5-HT2B and 5-HT2C receptors. An attempt has been made in the present study to explain the 
selectivity for 5-HT2 receptor subtypes in the form of selectivity ratio (SR) in terms of quantifying parameters 
(descriptors). For a given receptor the binding affinity has been reported as K i values. The selectivity ratio (SR) 
was calculated as the ratio of Ki values for 5-HT2A, 5-HT2B and 5-HT2C receptors and the same was then 
expressed on negative logarithmic scale as –log (SR). The ratios Ki(5-HT2A)/Ki(5-HT2B) and Ki(5-HT2A)/Ki(5-HT2C) 
has been represented by SR1 and SR2, respectively. Two different pools of relevant descriptors were used to 
explore significant QSARs through CP-MLR. The relevant descriptors were obtained by exclusion (descriptors 
which are intercorrelated beyond 0.90 and showing a correlation of less than 0.1 with the biological endpoints 
were excluded). A total number of 80 and 84 descriptors emerged as relevant ones for SR1 and SR2, 
respectively. These descriptors were then subjected to CP-MLR and 8 models for SR1 and 5 models for SR2 
were obtained. The selected models for the SR1 and SR2 are presented below. 
 

–log SR1 = 2.574(0.385)nR06 + 1.496(0.509)IVDE + 1.767(0.498)GATS2p –1.971 
n = 15, r = 0.934, s = 0.421, F = 25.250, FIT = 3.156, LOF = 0.362, AIC = 0.307, 

Q
2

LOO = 0.771, Q
2

L5O = 0.855, r
2

randY(sd) = 0.242(0.152), r
2

Test
 
= 0.566  (10) 

 
–log SR1 = 1.355(0.369)MAXDP –1.848(0.783)X1A + 2.039(0.627)nCs + 0.555 
n = 15, r = 0.899, s = 0.517, F = 15.560, FIT = 1.945, LOF = 0.544, AIC = 0.461, 

Q
2

LOO = 0.618, Q
2

L5O = 0.643, r
2

randY(sd) = 0.197(0.146), r
2

Test
 
= 0.912  (11) 

 
–log SR1 = –0.883(0.332)nR07 + 1.451(0.399)MAXDP –1.295(0.571)JGI5 + 1.014 

n = 15, r = 0.898, s = 0.518, F = 15.428, FIT = 1.928, LOF = 0.548, AIC = 0.464, 
Q

2
LOO = 0.669, Q

2
L5O = 0.755, r

2
randY(sd) = 0.199(0.124), r

2
Test

 
= 0.517  (12) 

 
–log SR1 = 2.273(0.641)BEHe1 – 2.011(0.426)GATS5e +2.231(0.569)nCs – 0.117 

n = 15, r = 0.894, s = 0.530, F = 14.613, FIT = 1.826, LOF = 0.572, AIC = 0.485, 
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Q
2

LOO = 0.713, Q
2

L5O = 0.724, r
2

randY(sd) = 0.241(0.159), r
2

Test
 
= 0.727  (13) 

 
-log SR2 = 1.242(0.255)RBN – 1.472(0.247)BELv7 + 1.994(0.302)BEHe1 + 0.545 
n = 15, r = 0.909, s = 0.198, F = 17.457, FIT = 2.182, LOF = 0.079, AIC = 0.067, 

Q
2

LOO = 0.641, Q
2

L5O = 0.687, r
2

randY(sd) = 0.217(0.149), r
2

Test
 
= 0.525  (14) 

 
-log SR2 = -0.722(0.186)X2Av + 0.929(0.234)IC2 + 1.131(0.272)BEHe1 + 0.772 
n = 15, r = 0.903, s = 0.203, F = 16.347, FIT = 2.043, LOF = 0.084, AIC = 0.071, 

Q
2

LOO = 0.582, Q
2

L5O = 0.707, r
2

randY(sd) = 0.223(0.133), r
2

Test
 
= 0.572  (15) 

 
-log SR2 = -0.972(0.202)X2Av +1.016(0.292)BEHe1 + 0.533(0.163)nCt + 1.333 
n = 15, r = 0.880, s = 0.225, F = 12.601, FIT = 1.575, LOF = 0.103, AIC = 0.087, 

Q
2

LOO = 0.603, Q
2

L5O = 0.698, r
2

randY(sd) = 0.209(0.147), r
2

Test
 
= 0.575  (16) 

 
-log SR2 = -1.147(0.234)BLI + 0.771(0.278)LP1 + 0.416(0.165)nCt + 1.609 

n = 15, r = 0.857, s = 0.244, F = 10.142, FIT = 1.267, LOF = 0.122, AIC = 0.103, 
Q

2
LOO = 0.510, Q

2
L5O = 0.522, r

2
randY(sd) = 0.187(0.109), r

2
Test

 
= 0.674  (17) 

 
From the correlation of the participated descriptors to the activity, in above models, the presence of 

more number of six membered rings (nR06) and  higher number of sp
3
 hybridized secondary carbon atoms 

(nCs) in a molecular structure and higher values of  mean information content vertex degree equality (IVDE)), 
atomic polarizabilities weighted Geary autocorrelation of lag-2 (GATS2p), maximal electrotopological positive 
variation (MAXDP) and the highest eigenvalue n. 1 of Burden matrix / weighted by atomic Sanderson 
electronegativities (BEHe1) would be in favor of selectivity toward 5-HT2A receptor. On the other hand higher 
values of atomic Sanderson electronegativities weighted Geary autocorrelation of lag 5 (GATS5e), average 
connectivity index, chi-1 (X1A), mean topological charge index of order 5 (JGI5) and presence of more number 
of seven membered rings in a molecular structure would be beneficiary to the 5-HT2B activity. 

 
The contribution of participated descriptors in regression models for the SR2 activity suggest that a 

higher value of information content index of 2-order neighbourhood symmetry (IC2), highest eigenvalue n. 1 of 
Burden matrix / weighted by atomic Sanderson electronegativities (BEHe1), Lovasz-Pelikan index which is 
related to leading eigen value (LP1) and presence of more rotatable bonds (RBN) and sp

3
 hybridized tertiary 

carbon atoms in a molecular structure are in favor of SR2. Additionally, lower values of lowest eigenvalue n. 7 
of Burden matrix / weighted by atomic van der Waals volumes (BELv7), average valence connectivity index, 
chi-2 (X2Av) and Kier benzene-likeliness index (BLI) are advantageous to the 5-HT2A as compared to 5-HT2C 
activity.  

 
These models have accounted for up to 87.23 and 82.62 percent variances in the observed activities 

(SR1 and SR2, respectively). The values greater than 0.5 of Q
2
-index and r

2
Test hints that these models are 

reasonable robust QSAR models and the predictions of the test set compounds based on external validation 
are satisfactory. The predicted activity values of test set compounds are mentioned in Table 4.  
 

The regression analysis for the SR1 and SR2 activities has also been performed through CP-MLR using 
the 89 descriptors which were employed for 5-HT2A binding activity. QSARs have also been obtained for the 
SR1 activity in the descriptor pool of SR2 activity and vice versa. The results are represented in Table 5.  It is 
evident from this table that the most of the descriptors emerged in these models are part of the model 
equations discussed above and hold scope to quantify the biological endpoints.  
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Table 4: observed and modeled 5-HT selectivity ratio of 2-Alkyl-4-aryl-pyrimidine fused heterocycles. 
 

Cpd. Ki(nM)
a
 5-HT -logSR1

b 
-logSR2

c 

2A 2B 2C Obs. Eq.10 Eq.11 Eq.12 Eq.13 Obs. Eq.14 Eq.15 Eq.16 Eq.17 

1
d
 20 70 300 0.544 0.915 0.768 0.310 1.244 1.176 1.437 1.105 1.290 1.017 

2 1200 270 5000 -0.648 -0.698 -0.646 -0.192 -0.598 0.620 0.753 0.894 0.677 0.809 

3 4 20 80 0.699 0.551 0.554 0.625 0.532 1.301 1.400 1.391 1.552 1.555 

4 13 30 200 0.363 0.526 1.155 1.039 0.833 1.187 1.397 1.078 1.255 1.185 

5
 

2.5 1 23 -0.398 0.161 -0.097 -0.301 -0.483 0.964 0.960 1.188 1.098 0.908 

6 11 4.8 120 -0.360 -0.151 -0.472 -0.348 0.673 1.038 0.863 1.006 1.299 1.123 

7 34 20 460 -0.230 -0.481 -0.093 0.059 -0.294 1.131 1.240 1.327 1.361 1.246 

8 0.7 40 50 1.757 1.667 2.006 1.421 2.095 1.854 1.536 1.611 1.667 1.656 

9
d 

0.6 30 20 1.699 1.275 1.821 1.461 1.759 1.523 1.536 1.545 1.536 1.487 

10 0.4 2.5 15 0.796 0.886 0.519 0.067 0.602 1.574 1.628 1.488 1.404 1.232 

11 0.8 22 38 1.439 1.373 1.939 1.048 1.885 1.677 1.808 1.937 1.974 1.836 

12
d
 20 2500 560 2.097 2.297 1.979 2.438 1.914 1.447 1.674 1.769 1.737 1.737 

13 2.2 220 110 2.000 1.704 1.406 2.015 0.968 1.699 1.535 1.501 1.431 1.413 

14 5 70 100 1.146 0.950 1.291 1.101 1.177 1.301 1.607 1.107 1.010 1.702 

15
 

11 2250 1020 2.311 1.838 1.384 1.625 1.774 1.967 1.882 1.839 1.824 1.650 

16
 

13 2200 1000 2.228 2.709 2.165 2.398 2.236 1.886 1.674 1.813 1.843 1.907 

17
d 

11 210 485 1.281 1.785 1.570 1.993 1.424 1.644 1.870 1.868 1.667 1.657 

18
 

40 9000 5000 2.352 1.723 1.826 2.011 2.118 2.097 2.154 2.244 2.009 2.012 

19 29 400 1000 1.140 1.838 1.657 2.026 1.079 1.538 1.397 1.411 1.430 1.601 

20
d 

50 1000 4590 1.301 1.877 1.136 1.862 1.514 1.963 1.879 1.923 2.211 2.069 
a
Reference [14],

 b
SR1=

 
Ki(5-HT2A)/Ki(5-HT2B), 

c
SR2=

 
Ki(5-HT2A)/Ki(5-HT2C) and 

d
Test set compounds. 

 
Table 5: Models obtained for SR activities in various pools of descriptors through CP-MLR. 

 

S. 
No. 

Analysis for 
the 

Models 

1 
SR1

 

(in 
descriptors 

used for 
the analysis 
of 5-HT2A) 

-log SR1= 1.121(0.309)MAXDP + 3.136(0.649)D/Dr06 - 2.077(0.680)BELp3 + 0.327 
n = 15, r = 0.936, s = 0.414, F = 26.213, Q

2
LOO = 0.801, Q

2
L5O = 0.796, r

2
Test

 
= 0.552  (18) 

-log SR1= -1.885(0.491)X0Av + 2.407(0.475)GATS5p +2.189(0.602)nCs + 0.585 
n = 15, r = 0.915, s = 0.477, F = 18.861, Q

2
LOO = 0.697, Q

2
L5O = 0.748, r

2
Test

 
= 0.580 (19) 

-log SR1= 1.844(0.333)MAXDP + 1.519(0.605)BEHm1 + 2.071(0.614)nCs -1.316 
n = 15, r = 0.904, s = 0.505, F = 16.417, Q

2
LOO = 0.633, Q

2
L5O = 0.699, r

2
Test

 
= 0.593 (20) 

-log SR1= 3.750(0.792)BEHp3 + 2.996(0.596)nCs -4.077(0.727)MR -0.247 
n = 15, r = 0.900, s = 0.513, F = 15.810, Q

2
LOO = 0.648, Q

2
L5O = 0.645, r

2
Test

 
= 0.693 (21) 

2 
SR1

 

(in 
descriptors 

used for 
the analysis 

of SR2) 

–log SR1 = 2.574(0.385)nR06 + 1.496(0.509)IVDE + 1.767(0.498)GATS2p –1.971 
n = 15, r = 0.934, s = 0.421, F = 25.250, Q

2
LOO = 0.771, Q

2
L5O = 0.855, r

2
Test

 
= 0.566 (10) 

-log SR1= -2.411(0.501)X0Av -2.196(0.426)BEHv5 + 1.655(0.569)nCs + 3.070 
n = 15, r = 0.916, s = 0.472, F = 19.349, Q

2
LOO = 0.716, Q

2
L5O = 0.657, r

2
Test

 
= 0.613 (22) 

–log SR1 = 1.355(0.369)MAXDP –1.848(0.783)X1A + 2.039(0.627)nCs + 0.555 
n = 15, r = 0.899, s = 0.517, F = 15.560, Q

2
LOO = 0.618, Q

2
L5O = 0.643, r

2
Test

 
= 0.912 (11) 

–log SR1 = –0.883(0.332)nR07 + 1.451(0.399)MAXDP –1.295(0.571)JGI5 + 1.014 
n = 15, r = 0.898, s = 0.518, F = 15.428, Q

2
LOO = 0.669, Q

2
L5O = 0.755, r

2
Test

 
= 0.517 (12) 

3 SR2
 

(in 
descriptors 

used for 
the analysis 
of 5-HT2A) 

-logSR2= 1.242 (0.255)RBN – 1.472(0.247)BELv7 + 1.994(0.302)BEHe1 + 0.545 
n = 15, r = 0.909, s = 0.198, F = 17.457, Q

2
LOO = 0.641, Q

2
L5O = 0.545, r

2
Test

 
= 0.525  (23) 

-logSR2= 0.522(0.246)Ram + 1.516(0.276)GATS2p – 1.133(0.218)C-002 + 0.858 
n = 15, r = 0.899, s = 0.207, F = 15.484, Q

2
LOO = 0.704, Q

2
L5O = 0.522, r

2
Test

 
= 0.546  (24) 

-logSR2= -1.036(0.252)BELv7 + 1.559(0.299)BEHe1 + 0.727(0.175)JGI6 + 0.664 
n = 15, r = 0.886, s = 0.219, F = 13.471, Q

2
LOO = 0.526, Q

2
L5O = 0.559, r

2
Test

 
= 0.590  (25) 

4 
SR2

 

(in 
descriptors 

used for 
the analysis 

of SR1) 

-log SR2 = 1.242(0.255)RBN – 1.472(0.247)BELv7 + 1.994(0.302)BEHe1 + 0.545 
n = 15, r = 0.909, s = 0.198, F = 17.457, Q

2
LOO = 0.641, Q

2
L5O = 0.687, r

2
Test

 
= 0.525 (14) 

-log SR2 = -0.722(0.186)X2Av + 0.929(0.234)IC2 + 1.131(0.272)BEHe1 + 0.772 
n = 15, r = 0.903, s = 0.203, F = 16.347, Q

2
LOO = 0.582, Q

2
L5O = 0.707, r

2
Test

 
= 0.572 (15) 

-log SR2 = -0.972(0.202)X2Av +1.016(0.292)BEHe1 + 0.533(0.163)nCt + 1.333 
n = 15, r = 0.880, s = 0.225, F = 12.601, Q

2
LOO = 0.603, Q

2
L5O = 0.698, r

2
Test

 
= 0.575  (16) 

-log SR2 = -1.147(0.234)BLI + 0.771(0.278)LP1 + 0.416(0.165)nCt + 1.609 
n = 15, r = 0.857, s = 0.244, F = 10.142, Q

2
LOO = 0.510, Q

2
L5O = 0.522, r

2
Test

 
= 0.674  (17) 
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CONCLUSIONS 
 

In conclusion, the present study has provided structure–activity relationships of the binding affinities 
of 2-Alkyl-4-aryl-pyrimidine fused heterocycles to 5-HT2 receptor in terms of structural requirements. The 
binding affinity has, therefore become the function of the cumulative effect of different structural features 
which were identified in terms of individual descriptors. In order to improve the 5-HT6 receptor binding affinity 
of a compound, less number of rotatable bonds (descriptor RBN), a more hydrophobic nature (descriptor 
MLOGP) and less polar surface area (descriptor PSA) in a molecular structure will be favorable to the binding 
affinity. A lower positive values of descriptors PW4 (path/walk 4 - Randic shape index) and MATS2m (Moran 
autocorrelation –lag 2/weighted by atomic masses) and higher value of descriptor MATS1v (Moran   
autocorrelation –lag 1/weighted by atomic van der Waals volumes) will augment the activity. Additionally, a 
lower value of descriptor BEHm1 (highest eigenvalue n. 1 of Burden matrix/weighted by atomic masses), 
higher value of descriptor BEHp1 (highest eigenvalue n. 1 of Burden matrix / weighted by atomic 
polarizabilities) and a higher value of 7

th
 order charge index (GGI7) will be beneficiary to the activity. 
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